Changes

m
Line 95: Line 95:     
==[[Digital technologies/3D printing/3D modeling- Beginner/Design for 3D Printing|Design for 3D Printing]]==
 
==[[Digital technologies/3D printing/3D modeling- Beginner/Design for 3D Printing|Design for 3D Printing]]==
[[File:Design for 3D Printing Generatively Designed Bracket.jpg|alt=3D printed bracket|thumb|A metal 3D printed generatively designed bracket (computer generated from load data, using Finite Element Analysis), likely replacing a multitude of other parts that would have been manufactured using traditional manufacturing methods which would lead to a heavier and more expensive bracket.<ref>CarrusHome (2021). GM Explores 3D printing, generative design for next gen parts. Consulted on 05/05/2022 at https://www.carrushome.com/en/gm-explores-3d-printing-generative-design-for-next-gen-parts/</ref>|450x450px]]It is very important, while designing, to be aware of the limitations of the manufacturing method which will be used to make your design reality. Since this article focuses on 3D modeling for 3D printing, this section will only focus on those considerations relating to 3D printing. If you are unsure how 3D printing works, it is imperative that you read through the [[Digital technologies/3D printing/3D printing- Beginner|Beginner 3D Printing]] page on this wiki for you to understand the concepts and considerations discussed below. If your design is to be used in (electro-)mechanical assemblies in which there are interfacing components, is also important that you understand three basic tolerancing concepts and to keep them in the back of your mind when modeling or more generally designing these assemblies. If you will not be designing mechanical and electromechanical assemblies, you can skip to the next subsection.
+
[[File:Design for 3D Printing Generatively Designed Bracket.jpg|alt=3D printed bracket|thumb|A metal 3D printed generatively designed bracket (computer generated from load data, using Finite Element Analysis), likely replacing a multitude of other parts that would have been manufactured using traditional manufacturing methods which would lead to a heavier and more expensive bracket.<ref>CarrusHome (2021). GM Explores 3D printing, generative design for next gen parts. Consulted on 05-05-2022 at https://www.carrushome.com/en/gm-explores-3d-printing-generative-design-for-next-gen-parts/</ref>|450x450px]]It is very important, while designing, to be aware of the limitations of the manufacturing method which will be used to make your design reality. Since this article focuses on 3D modeling for 3D printing, this section will only focus on those considerations relating to 3D printing. If you are unsure how 3D printing works, it is imperative that you read through the [[Digital technologies/3D printing/3D printing- Beginner|Beginner 3D Printing]] page on this wiki for you to understand the concepts and considerations discussed below. If your design is to be used in (electro-)mechanical assemblies in which there are interfacing components, is also important that you understand three basic tolerancing concepts and to keep them in the back of your mind when modeling or more generally designing these assemblies. If you will not be designing mechanical and electromechanical assemblies, you can skip to the next subsection.
    
#Form: The form of a part refers to the overall dimensions and the shape of the exterior surfaces of a component. Think of a flaw referring to form as a print that ended up not matching the base geometry that was used to create it in CAD due to adverse physical variables during the printing process. Examples follow:
 
#Form: The form of a part refers to the overall dimensions and the shape of the exterior surfaces of a component. Think of a flaw referring to form as a print that ended up not matching the base geometry that was used to create it in CAD due to adverse physical variables during the printing process. Examples follow:
295

edits